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Chapter 1

Overview and Summary

After a quick warm-up for dynamic general equilibrium models in the ¯rst part
of the course we will discuss the two workhorses of modern macroeconomics, the
neoclassical growth model with in¯nitely lived consumers and the Overlapping
Generations (OLG) model. This ¯rst part will focus on techniques rather than
issues; one ¯rst has to learn a language before composing poems.

I will ¯rst present a simple dynamic pure exchange economy with two in-
¯nitely lived consumers engaging in intertemporal trade. In this model the
connection between competitive equilibria and Pareto optimal equilibria can be
easily demonstrated. Furthermore it will be demonstrated how this connec-
tion can exploited to compute equilibria by solving a particular social planners
problem, an approach developed ¯rst by Negishi (1960) and discussed nicely by
Kehoe (1989).

This model with then enriched by production (and simpli¯ed by dropping
one of the two agents), to give rise to the neoclassical growth model. This
model will ¯rst be presented in discrete time to discuss discrete-time dynamic
programming techniques; both theoretical as well as computational in nature.
The main reference will be Stokey et al., chapters 2-4. As a ¯rst economic
application the model will be enriched by technology shocks to develop the
Real Business Cycle (RBC) theory of business cycles. Cooley and Prescott
(1995) are a good reference for this application. In order to formulate the
stochastic neoclassical growth model notation for dealing with uncertainty will
be developed.

This discussion will motivate the two welfare theorems, which will then be
presented for quite general economies in which the commodity space may be
in¯nite-dimensional. We will draw on Stokey et al., chapter 15's discussion of
Debreu (1954).

The next two topics are logical extensions of the preceding material. We will
¯rst discuss the OLG model, due to Samuelson (1958) and Diamond (1965).
The ¯rst main focus in this module will be the theoretical results that distinguish
the OLG model from the standard Arrow-Debreu model of general equilibrium:
in the OLG model equilibria may not be Pareto optimal, ¯at money may have
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2 CHAPTER 1. OVERVIEW AND SUMMARY

positive value, for a given economy there may be a continuum of equilibria
(and the core of the economy may be empty). All this could not happen in
the standard Arrow-Debreu model. References that explain these di®erences in
detail include Geanakoplos (1989) and Kehoe (1989). Our discussion of these
issues will largely consist of examples. One reason to develop the OLG model
was the uncomfortable assumption of in¯nitely lived agents in the standard
neoclassical growth model. Barro (1974) demonstrated under which conditions
(operative bequest motives) an OLG economy will be equivalent to an economy
with in¯nitely lived consumers. One main contribution of Barro was to provide
a formal justi¯cation for the assumption of in¯nite lives. As we will see this
methodological contribution has profound consequences for the macroeconomic
e®ects of government debt, reviving the Ricardian Equivalence proposition. As
a prelude we will brie°y discuss Diamond's (1965) analysis of government debt
in an OLG model.

In the next module we will discuss the neoclassical growth model in con-
tinuous time to develop continuous time optimization techniques. After having
learned the technique we will review the main developments in growth the-
ory and see how the various growth models fare when being contrasted with
the main empirical ¯ndings from the Summers-Heston panel data set. We will
brie°y discuss the Solow model and its empirical implications (using the arti-
cle by Mankiw et al. (1992) and Romer, chapter 2), then continue with the
Ramsey model (Intriligator, chapter 14 and 16, Blanchard and Fischer, chapter
2). In this model growth comes about by introducing exogenous technological
progress. We will then review the main contributions of endogenous growth the-
ory, ¯rst by discussing the early models based on externalities (Romer (1986),
Lucas (1988)), then models that explicitly try to model technological progress
(Romer (1990).

All the models discussed up to this point usually assumed that individuals
are identical within each generation (or that markets are complete), so that
without loss of generality we could assume a single representative consumer
(within each generation). This obviously makes life easy, but abstracts from a
lot of interesting questions involving distributional aspects of government policy.
In the next section we will discuss a model that is capable of addressing these
issues. There is a continuum of individuals. Individuals are ex-ante identical
(have the same stochastic income process), but receive di®erent income realiza-
tions ex post. These income shocks are assumed to be uninsurable (we therefore
depart from the Arrow-Debreu world), but people are allowed to self-insure by
borrowing and lending at a risk-free rate, subject to a borrowing limit. Deaton
(1991) discusses the optimal consumption-saving decision of a single individual
in this environment and Aiyagari (1994) incorporates Deaton's analysis into a
full-blown dynamic general equilibrium model. The state variable for this econ-
omy turns out to be a cross-sectional distribution of wealth across individuals.
This feature makes the model interesting as distributional aspects of all kinds
of government policies can be analyzed, but it also makes the state space very
big. A cross-sectional distribution as state variable requires new concepts (de-
veloped in measure theory) for de¯ning and new computational techniques for



3

computing equilibria. The early papers therefore restricted attention to steady
state equilibria (in which the cross-sectional wealth distribution remained con-
stant). Very recently techniques have been developed to handle economies with
distributions as state variables that feature aggregate shocks, so that the cross-
sectional wealth distribution itself varies over time. Krusell and Smith (1998)
is the key reference. Applications of their techniques to interesting policy ques-
tions could be very rewarding in the future. If time permits I will discuss such
an application due to Heathcote (1999).

For the next two topics we will likely not have time; and thus the corre-
sponding lecture notes are work in progress. So far we have not considered
how government policies a®ect equilibrium allocations and prices. In the next
modules this question is taken up. First we discuss ¯scal policy and we start
with positive questions: how does the governments' decision to ¯nance a given
stream of expenditures (debt vs. taxes) a®ect macroeconomic aggregates (Barro
(1974), Ohanian (1997))?; how does government spending a®ect output (Baxter
and King (1993))? In this discussion government policy is taken as exogenously
given. The next question is of normative nature: how should a benevolent gov-
ernment carry out ¯scal policy? The answer to this question depends crucially
on the assumption of whether the government can commit to its policy. A gov-
ernment that can commit to its future policies solves a classical Ramsey problem
(not to be confused with the Ramsey model); the main results on optimal ¯scal
policy are reviewed in Chari and Kehoe (1999). Kydland and Prescott (1977)
pointed out the dilemma a government faces if it cannot commit to its policy
-this is the famous time consistency problem. How a benevolent government
that cannot commit should carry out ¯scal policy is still very much an open
question. Klein and Rios-Rull (1999) have made substantial progress in an-
swering this question. Note that we throughout our discussion assume that the
government acts in the best interest of its citizens. What happens if policies are
instead chosen by votes of sel¯sh individuals is discussed in the last part of the
course.

As discussed before we assumed so far that government policies were either
¯xed exogenously or set by a benevolent government (that can or can't commit).
Now we relax this assumption and discuss political-economic equilibria in which
people not only act rationally with respect to their economic decisions, but also
rationally with respect to their voting decisions that determine macroeconomic
policy. Obviously we ¯rst had to discuss models with heterogeneous agents since
with homogeneous agents there is no political con°ict and hence no interesting
di®erences between the Ramsey problem and a political-economic equilibrium.
This area of research is not very far developed and we will only present two
examples (Krusell et al. (1997), Alesina and Rodrik (1994)) that deal with the
question of capital taxation in a dynamic general equilibrium model in which
the capital tax rate is decided upon by repeated voting.
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Chapter 2

A Simple Dynamic
Economy

2.1 General Principles for Specifying a Model

An economic model consists of di®erent types of entities that take decisions
subject to constraints. When writing down a model it is therefore crucial to
clearly state what the agents of the model are, which decisions they take, what
constraints they have and what information they possess when making their
decisions. Typically a model has (at most) three types of decision-makers

1. Households: We have to specify households preferences over commodi-
ties and their endowments of these commodities. Households are as-
sumed to maximize their preferences, subject to a constraint set that
speci¯es which combination of commodities a household can choose from.
This set usually depends on the initial endowments and on market prices.

2. Firms: We have to specify the technology available to ¯rms, describ-
ing how commodities (inputs) can be transformed into other commodities
(outputs). Firms are assumed to maximize (expected) pro¯ts, subject to
their production plans being technologically feasible.

3. Government: We have to specify what policy instruments (taxes, money
supply etc.) the government controls. When discussing government policy
from a positive point of view we will take government polices as given
(of course requiring the government budget constraint(s) to be satis¯ed),
when discussing government policy from a normative point of view we
will endow the government, as households and ¯rms, with an ob jective
function. The government will then maximize this objective function by
choosing policy, subject to the policies satisfying the government budget
constraint(s)).

5



6 CHAPTER 2. A SIMPLE DYNAMIC ECONOMY

In addition to specifying preferences, endowments, technology and policy, we
have to specify what information agents possess when making decisions. This
will become clearer once we discuss models with uncertainty. Finally we have
to be precise about how agents interact with each other. Most of economics
focuses on market interaction between agents; this will be also the case in this
course. Therefore we have to specify our equilibrium concept, by making
assumptions about how agents perceive their power to a®ect market prices.
In this course we will focus on competitive equilibria, by assuming that all
agents in the model (apart from possibly the government) take market prices
as given and beyond their control when making their decisions. An alternative
assumption would be to allow for market power of ¯rms or households, which
induces strategic interactions between agents in the model. Equilibria involving
strategic interaction have to be analyzed using methods from modern game
theory, which you will be taught in the second quarter of the micro sequence.

To summarize, a description of any model in this course should always con-
tain the specī cation of the elements in bold letters: what commodities are
traded, preferences over and endowments of these commodities, technology, gov-
ernment policies, the information structure and the equilibrium concept.

2.2 An Example Economy
Time is discrete and indexed by t = 0; 1; 2; : : : There are 2 individuals that live
forever in this pure exchange economy. There are no ¯rms or any government in
this economy. In each period the two agents trade a nonstorable consumption
good. Hence there are (countably) in¯nite number of commodities, namely
consumption in periods t = 0; 1; 2; : : :

De¯nition 1 An allocation is a sequence (c1; c2) = f(c1
t ;c2

t )g1
t=0 of consump-

tion in each period for each individual.

Individuals have preferences over consumption allocations that can be rep-
resented by the utility function

u(ci) =
1X

t=0

¯t ln(ci
t) (2.1)

with ¯ 2 (0; 1):
This utility function satis¯es some assumptions that we will often require in

this course. These are further discussed in the appendix to this chapter. Note
that both agents are assumed to have the same time discount factor ¯:

Agents have deterministic endowment streams ei = fei
tg1

t=0 of the consump-
tion goods given by

e1
t =

½
2
0

if t is even
if t is odd

e2
t =

½
0
2

if t is even
if t is odd
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There is no uncertainty in this model and both agents know their endowment
pattern perfectly in advance. All information is public, i.e. all agents know
everything. At period 0; before endowments are received and consumption takes
place, the two agents meet at a central market place and trade all commodities,
i.e. trade consumption for all future dates. Let pt denote the price, in period 0;
of one unit of consumption to be delivered in period t; in terms of an abstract
unit of account. We will see later that prices are only determined up to a
constant, so we can always normalize the price of one commodity to 1 and make
it the numeraire. Both agents are assumed to behave competitively in that
they take the sequence of prices fptg1

t=0 as given and beyond their control when
making their consumption decisions.

After trade has occurred agents possess pieces of paper (one may call them
contracts) stating

in period 212 I, agent 1; will deliver 0.25 units of the consumption
good to agent 2 (and will eat the remaining 1.75 units)

in period 2525 I, agent 1; will receive one unit of the consumption
good from agent 2 (and eat it).

and so forth. In all future periods the only thing that happens is that agents
meet (at the market place again) and deliveries of the consumption goods they
agreed upon in period 0 takes place. Again, all trade takes place in period 0
and agents are committed in future periods to what they have agreed upon in
period 0: There is perfect enforcement of these contracts signed in period 0:1

2.2.1 De¯nition of Competitive Equilibrium
Given a sequence of prices fptg1

t=0 households solve the following optimization
problem

max
fci

tg1
t=0

1X

t=0

¯t ln(ci
t)

s.t.
1X

t=0

ptci
t ·

1X

t=0

ptei
t

ci
t ¸ 0 for all t

Note that the budget constraint can be rewritten as

1X

t=0

pt(ei
t ¡ ci

t) ¸ 0

1Amarket structure in which agents trade only at period 0 will be called an Arrow-Debreu
market structure. We will show below that this market structure is equivalent to a market
structure in which trade in consumption and a particular asset takes place in each period, a
market structure that we will call sequential markets.
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The quantity ei
t ¡ ci

t is the net trade of consumption of agent i for period t which
may be positive or negative.

For arbitrary prices fptg1
t=0 it may be the case that total consumption in

the economy desired by both agents, c1
t + c2

t at these prices does not equal total
endowments e1

t + e2
t ´ 2: We will call equilibrium a situation in which prices

are \right" in the sense that they induce agents to choose consumption so that
total consumption equals total endowment in each period. More precisely, we
have the following de¯nition

De¯nition 2 A (competitive) Arrow-Debreu equilibrium are prices fp̂tg1
t=0 and

allocations (fĉi
tg1

t=0)i=1;2 such that

1. Given fp̂tg1
t=0; for i = 1;2; fĉi

tg1
t=0 solves

max
fci

tg1
t=0

1X

t=0

¯t ln(ci
t) (2.2)

s.t.
1X

t=0

p̂tci
t ·

1X

t=0

p̂tei
t (2.3)

ci
t ¸ 0 for all t (2.4)

2.

ĉ1
t + ĉ2

t = e1
t + e2

t for all t (2.5)

The elements of an equilibrium are allocations and prices. Note that we
do not allow free disposal of goods, as the market clearing condition is stated
as an equality.2 Also note the ^'s in the appropriate places: the consumption
allocation has to satisfy the budget constraint (2:3) only at equilibrium prices
and it is the equilibrium consumption allocation that satis¯es the goods market
clearing condition (2:5): Since in this course we will usually talk about com-
petitive equilibria, we will henceforth take the adjective \competitive" as being
understood.

2.2.2 Solving for the Equilibrium

For arbitrary prices fptg1
t=0 let's ¯rst solve the consumer problem. Attach

the Lagrange multiplier ¸i to the budget constraint. The ¯rst order necessary

2Di®erent people have di®erent tastes as to whether one should allow free disposal or not.
Personally I think that if one wishes to allow free disposal, one should specify this as part of
technology (i.e. introduce a ¯rm that has available a technology that uses positive inputs to
produce zero output; obviously for such a ¯rm to be operative in equilibrium it has to be the
case that the price of the inputs are non-positive -think about goods that are actually bads
such as pollution).
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conditions for ci
t and ci

t+1 are then

¯t

ci
t

= ¸ipt (2.6)

¯t+1

ci
t+1

= ¸ipt+1 (2.7)

and hence

pt+1ci
t+1 = ¯ptci

t for all t (2.8)

for i = 1; 2:
Equations (2:8); together with the budget constraint can be solved for the

optimal sequence of consumption of household i as a function of the in¯nite
sequence of prices (and of the endowments, of course)

ci
t = ci

t (fptg1
t=0)

In order to solve for the equilibrium prices fptg1
t=0 one then uses the goods

market clearing conditions (2:5)

c1
t (fptg1

t=0) + c2t (fptg1
t=0) = e1

t + e2
t for all t

This is a system of in¯nite equations (for each t one) in an in¯nite number
of unknowns fptg1

t=0 which is in general hard to solve. Below we will discuss
Negishi's method that often proves helpful in solving for equilibria by reducing
the number of equations and unknowns to a smaller number.

For our particular simple example economy, however, we can solve for the
equilibrium directly. Sum (2:8) across agents to obtain

pt+1
¡
c1t+1 + c2t+1

¢
= ¯pt(c1

t + c2
t )

Using the goods market clearing condition we ¯nd that

pt+1
¡
e1

t+1 + e2
t+1

¢
= ¯pt(e1

t + e2
t )

and hence

pt+1 = ¯pt

and therefore equilibrium prices are of the form

pt = ¯ tp0

Without loss of generality we can set p0 = 1; i.e. make consumption at period
0 the numeraire.3 Then equilibrium prices have to satisfy

p̂t = ¯t

3Note that multiplying all prices by ¹> 0 does not change the budget constraints of agents,
so that if prices fptg1t=0 and allocations (fcitg1t=0)i21;2 are an AD equilibrium, so are prices
f¹ptg1t=0 and allocations (fcitg1t=0)i=1;2
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so that, since ¯ < 1, the period 0 price for period t consumption is lower than the
period 0 price for period 0 consumption. This fact just re°ects the impatience
of both agents.

Using (2:8) we have that ci
t+1 = ci

t = ci
0 for all t, i.e. consumption is

constant across time for both agents. This re°ects the agent's desire to smooth
consumption over time, a consequence of the strict concavity of the period utility
function. Now observe that the budget constraint of both agents will hold with
equality since agents' period utility function is strictly increasing. The left hand
side of the budget constraint becomes

1X

t=0

p̂tci
t = ci

0

1X

t=0

¯t =
ci
0

1 ¡ ¯

for i = 1; 2:
The two agents di®er only along one dimension: agent 1 is rich ¯rst, which,

given that prices are declining over time, is an advantage. For agent 1 the right
hand side of the budget constraint becomes

1X

t=0

p̂te1
t = 2

1X

t=0

¯2t =
2

1 ¡ ¯2

and for agent 2 it becomes

1X

t=0

p̂te2
t = 2¯

1X

t=0

¯2t =
2¯

1 ¡ ¯2

The equilibrium allocation is then given by

ĉ1
t = ĉ1

0 = (1 ¡ ¯ )
2

1 ¡ ¯2 =
2

1 + ¯
> 1

ĉ2
t = ĉ2

0 = (1 ¡ ¯ )
2¯

1 ¡ ¯2 =
2¯

1 + ¯
< 1

which obviously satis¯es

ĉ1
t + ĉ2

t = 2 = ê1
t + ê2

t for all t

Therefore the mere fact that the ¯rst agent is rich ¯rst makes her consume
more in every period. Note that there is substantial trade going on; in each
even period the ¯rst agent delivers 2 ¡ 2

1+¯ = 2¯
1+¯ to the second agent and in

all odd periods the second agent delivers 2 ¡ 2¯
1+¯ to the ¯rst agent. Also note

that this trade is mutually bene¯cial, because without trade both agents receive
lifetime utility

u(ei
t) = ¡1
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whereas with trade they obtain

u( ĉ1) =
1X

t=0

¯t ln
µ

2
1 + ¯

¶
=

ln
³

2
1+¯

´

1 ¡ ¯
> 0

u( ĉ2) =
1X

t=0

¯t ln
µ

2¯
1 + ¯

¶
=

ln
³

2¯
1+¯

´

1 ¡ ¯
< 0

In the next section we will show that not only are both agents better o® in
the competitive equilibrium than by just eating their endowment, but that, in
a sense to be made precise, the equilibrium consumption allocation is socially
optimal.

2.2.3 Pareto Optimality and the First Welfare Theorem
In this section we will demonstrate that for this economy a competitive equi-
librium is socially optimal. To do this we ¯rst have to de¯ne what socially
optimal means. Our notion of optimality will be Pareto e±ciency (also some-
times referred to as Pareto optimality). Loosely speaking, an allocation is Pareto
e±cient if it is feasible and if there is no other feasible allocation that makes no
household worse o® and at least one household strictly better o®. Let us now
make this precise.

De¯nition 3 An allocation f(c1
t ; c

2
t )g1

t=0 is feasible if

1.

ci
t ¸ 0 for all t; for i = 1; 2

2.

c1
t + c2

t = e1
t + e2

t for all t

Feasibility requires that consumption is nonnegative and satis¯es the re-
source constraint for all periods t = 0; 1; : : :

De¯nition 4 An allocation f(c1t ; c2
t )g1

t=0 is Pareto e±cient if it is feasible and
if there is no other feasible allocation f(~c1

t ; ~c2
t )g1

t=0 such that

u(~ci) ¸ u(ci) for both i = 1; 2
u(~ci) > u(ci) for at least one i = 1; 2

Note that Pareto e±ciency has nothing to do with fairness in any sense: an
allocation in which agent 1 consumes everything in every period and agent 2
starves is Pareto e±cient, since we can only make agent 2 better o® by making
agent 1 worse o®.
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We now prove that every competitive equilibrium allocation for the economy
described above is Pareto e±cient. Note that we have solved for one equilibrium
above; this does not rule out that there is more than one equilibrium. One can,
in fact, show that for this economy the competitive equilibrium is unique, but
we will not pursue this here.

Proposition 5 Let (fĉi
tg1

t=0)i=1;2 be a competitive equilibrium allocation. Then
(fĉi

tg1
t=0)i=1;2 is Pareto e±cient.

Proof. The proof will be by contradiction; we will assume that (fĉi
tg1

t=0)i=1;2
is not Pareto e±cient and derive a contradiction to this assumption.

So suppose that (fĉi
tg1

t=0)i=1;2 is not Pareto e±cient. Then by the de¯nition
of Pareto e±ciency there exists another feasible allocation (f~ci

tg1
t=0)i=1;2 such

that

u(~ci) ¸ u( ĉi) for both i = 1; 2
u(~ci) > u( ĉi) for at least one i = 1; 2

Without loss of generality assume that the strict inequality holds for i = 1:
Step 1: Show that

1X

t=0

p̂t~c1
t >

1X

t=0

p̂t ĉ1
t

where fp̂tg1
t=0 are the equilibrium prices associated with (fĉi

tg1
t=0)i=1;2: If not,

i.e. if
1X

t=0

p̂t~c1
t ·

1X

t=0

p̂t ĉ1
t

then for agent 1 the ~-allocation is better (remember u(~c1) > u(ĉ1) is assumed)
and not more expensive, which cannot be the case since fĉ1

t g1
t=0 is part of

a competitive equilibrium, i.e. maximizes agent 1's utility given equilibrium
prices. Hence

1X

t=0

p̂t~c1
t >

1X

t=0

p̂t ĉ1
t (2.9)

Step 2: Show that

1X

t=0

p̂t~c2
t ¸

1X

t=0

p̂t ĉ2
t

If not, then

1X

t=0

p̂t~c2
t <

1X

t=0

p̂t ĉ2
t
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But then there exists a ± > 0 such that

1X

t=0

p̂t~c2t + ± ·
1X

t=0

p̂t ĉ2t

Remember that we normalized p̂0 = 1: Now de¯ne a new allocation for agent 2;
by

·c2
t = ~c2

t for all t ¸ 1
·c2
0 = ~c2

0 + ± for t = 0

Obviously

1X

t=0

p̂t·c2t =
1X

t=0

p̂t~c2
t + ± ·

1X

t=0

p̂t ĉ2t

and

u(·c2) > u(~c2) ¸ u(ĉ2)

which can't be the case since fĉ2
t g1

t=0 is part of a competitive equilibrium, i.e.
maximizes agent 2's utility given equilibrium prices. Hence

1X

t=0

p̂t~c2
t ¸

1X

t=0

p̂tĉ2
t (2.10)

Step 3: Now sum equations (2:9) and (2:10) to obtain

1X

t=0

p̂t(~c1
t + ~c2

t ) >
1X

t=0

p̂t(ĉ1
t + ĉ2

t )

But since both allocations are feasible (the allocation (fĉi
tg1

t=0)i=1;2 because it is
an equilibrium allocation, the allocation (f~ci

tg1
t=0)i=1;2 by assumption) we have

that

~c1
t + ~c2

t = e1
t + e2

t = ĉ1t + ĉ2t for all t

and thus

1X

t=0

p̂t(e1
t + e2

t ) >
1X

t=0

p̂t(e1
t + e2

t );

our desired contradiction.
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2.2.4 Negishi's (1960) Method to Compute Equilibria
In the example economy considered in this section it was straightforward to
compute the competitive equilibrium by hand. This is usually not the case for
dynamic general equilibrium models. Now we describe a method to compute
equilibria for economies in which the welfare theorem(s) hold. The main idea is
to compute Pareto-optimal allocations by solving an appropriate social planners
problem. This social planner problem is a simple optimization problem which
does not involve any prices (still in¯nite-dimensional, though) and hence much
easier to tackle in general than a full-blown equilibrium analysis which consists
of several optimization problems (one for each consumer) plus market clearing
and involves allocations and prices. If the ¯rst welfare theorem holds then we
know that competitive equilibrium allocations are Pareto optimal; by solving
for all Pareto optimal allocations we have then solved for all potential equilib-
rium allocations. Negishi's method provides an algorithm to compute all Pareto
optimal allocations and to isolate those who are in fact competitive equilibrium
allocations.

We will repeatedly apply this trick in this course: solve a simple social
planners problem and use the welfare theorems to argue that we have solved
for the allocations of competitive equilibria. Then ¯nd equilibrium prices that
support these allocations. The news is even better: usually we can read o®
the prices as Lagrange multipliers from the appropriate constraints of the social
planners problem. In later parts of the course we will discuss economies in which
the welfare theorems do not hold. We will see that these economies are much
harder to analyze exactly because there is no simple optimization problem that
completely characterizes the (set of) equilibria of these economies.

Consider the following social planners problem

max
f(c1t ;c2t )g1

t=0

®u(c1) + (1 ¡ ®)u(c2) (2.11)

= max
f(c1t ;c2t )g1

t=0

1X

t=0

¯t £
® ln(c1

t ) + (1 ¡ ®) ln(c2t )
¤

s.t.
ci
t ¸ 0 for all i; all t

c1t + c2
t = e1

t + e2
t ´ 2 for all t

for a Pareto weight ® 2 [0; 1]: The social planner maximizes the weighted sum of
utilities of the two agents, subject to the allocation being feasible. The weight ®
indicates how important agent 1's utility is to the planner, relative to agent 2's
utility. Note that the solution to this problem depends on the Pareto weights,
i.e. the optimal consumption choices are functions of ®

f(c1
t ; c2

t )g1
t=0 = f(c1

t (®); c2t (®))g1
t=0

We have the following

Proposition 6 An allocation f(c1
t ; c2

t)g1
t=0 is Pareto e±cient if and only if it

solves the social planners problem (2:11) for some ® 2 [0; 1]
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Proof. Omitted (but a good exercise)
This proposition states that we can characterize the set of all Pareto e±-

cient allocations by varying ® between 0 and 1 and solving the social planners
problem for all ®'s. As we will demonstrate, by choosing a particular ®; the asso-
ciated e±cient allocation for that ® turns out to be the competitive equilibrium
allocation.

Now let us solve the planners problem for arbitrary ® 2 (0; 1):4 Attach La-
grange multipliers ¹t

2 to the resource constraints (and ignore the non-negativity
constraints on ci

t since they never bind, due to the period utility function satisfy-
ing the Inada conditions). The reason why we divide by 2 will become apparent
in a moment.

The ¯rst order necessary conditions are

®¯t

c1
t

=
¹t

2
(1 ¡ ®)¯t

c2
t

=
¹t

2

Combining yields

c1
t

c2
t

=
®

1 ¡ ®
(2.12)

c1
t =

®
1 ¡ ®

c2
t (2.13)

i.e. the ratio of consumption between the two agents equals the ratio of the
Pareto weights in every period t: A higher Pareto weight for agent 1 results
in this agent receiving more consumption in every period, relative to agent 2:
Using the resource constraint in conjunction with (2:13) yields

c1
t + c2

t = 2
®

1 ¡ ®
c2

t + c2
t = 2

c2
t = 2(1 ¡ ®) = c2

t (®)
c1

t = 2® = c1
t(®)

i.e. the social planner divides the total resources in every period according to the
Pareto weights. Note that the division is the same in every period, independent
of the agents endowments in that particular period. The Lagrange multipliers
are given by

¹t =
2®¯t

c1t
= ¯t

(if we wouldn't have done the initial division by 2 we would have to carry the
1
2 around from now on; the results below wouldn't change at all).

4Note that for ® = 0 and ®= 1 the solution to the problem is trivial. For ® = 0 we have
c1t = 0 and c2t = 2 and for ® = 1 we have the reverse.



16 CHAPTER 2. A SIMPLE DYNAMIC ECONOMY

Hence for this economy the set of Pareto e±cient allocations is given by

P O = ff(c1
t ; c

2
t )g1

t=0 : c1t = 2® and c2t = 2(1 ¡ ®) for some ® 2 [0;1]g

How does this help us in ¯nding the competitive equilibrium for this economy?
Compare the ¯rst order condition of the social planners problem for agent 1

®¯ t

c1t
=

¹t

2

or

¯t

c1
t

=
¹t

2®

with the ¯rst order condition from the competitive equilibrium above (see equation (2:6)):

¯t

c1
t

= ¸1pt

By picking ¸1 = 1
2® and pt = ¯t these ¯rst order conditions are identical. Sim-

ilarly, pick ¸2 = 1
2(1¡®) and one sees that the same is true for agent 2: So for

appropriate choices of the individual Lagrange multipliers ¸i and prices pt the
optimality conditions for the social planners' problem and for the household
maximization problems coincide. Resource feasibility is required in the com-
petitive equilibrium as well as in the planners problem. Given that we found
a unique equilibrium above but a lot of Pareto e±cient allocations (for each ®
one), there must be an additional requirement that a competitive equilibrium
imposes which the planners problem does not require.

In a competitive equilibrium households' choices are constrained by the bud-
get constraint; the planner is only concerned with resource balance. The last
step to single out competitive equilibrium allocations from the set of Pareto
e±cient allocations is to ask which Pareto e±cient allocations would be a®ord-
able for all households if these holds were to face as market prices the Lagrange
multipliers from the planners problem (that the Lagrange multipliers are the ap-
propriate prices is harder to establish, so let's proceed on faith for now). De¯ne
the transfer functions ti(®); i = 1; 2 by

ti(®) =
X

t

¹t
£
ci

t(®) ¡ ei
t
¤

The number ti(®) is the amount of the numeraire good (we pick the period 0
consumption good) that agent i would need as transfer in order to be able to
a®ord the Pareto e±cient allocation indexed by ®: One can show that the ti as
functions of ® are homogeneous of degree one5 and sum to 0 (see HW 1).

5In the sense that if one gives weight x® to agent 1 and x(1 ¡ ®) to agent 2, then the
corresponding required transfers are xt1 and xt2 :
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Computing ti(®) for the current economy yields

t1(®) =
X

t

¹t
£
c1

t (®) ¡ e1
t
¤

=
X

t

¯t £
2® ¡ e1

t
¤

=
2®

1 ¡ ¯
¡ 2

1 ¡ ¯2

t2(®) =
2(1 ¡ ®)

1 ¡ ¯
¡ 2¯

1 ¡ ¯2

To ¯nd the competitive equilibrium allocation we now need to ¯nd the Pareto
weight ® such that t1(®) = t2(®) = 0; i.e. the Pareto optimal allocation that
both agents can a®ord with zero transfers. This yields

0 =
2®

1 ¡ ¯
¡ 2

1 ¡ ¯2

® =
1

1 + ¯
2 (0; 0:5)

and the corresponding allocations are

c1
t

µ
1

1 + ¯

¶
=

2
1 + ¯

c2
t

µ
1

1 + ¯

¶
=

2¯
1 + ¯

Hence we have solved for the equilibrium allocations; equilibrium prices are
given by the Lagrange multipliers ¹t = ¯ t (note that without the normalization
by 1

2 at the beginning we would have found the same allocations and equilibrium
prices pt = ¯t

2 which, given that equilibrium prices are homogeneous of degree
0; is perfectly ¯ne, too).

To summarize, to compute competitive equilibria using Negishi's method
one does the following

1. Solve the social planners problem for Pareto e±cient allocations indexed
by Pareto weight ®

2. Compute transfers, indexed by ®, necessary to make the e±cient allocation
a®ordable. As prices use Lagrange multipliers on the resource constraints
in the planners' problem.

3. Find the Pareto weight(s) ®̂ that makes the transfer functions 0:

4. The Pareto e±cient allocations corresponding to ®̂ are equilibrium allo-
cations; the supporting equilibrium prices are (multiples of) the Lagrange
multipliers from the planning problem
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Remember from above that to solve for the equilibrium directly in general
involves solving an in¯nite number of equations in an in¯nite number of un-
knowns. The Negishi method reduces the computation of equilibrium to a ¯nite
number of equations in a ¯nite number of unknowns in step 3 above. For an
economy with two agents, it is just one equation in one unknown, for an economy
with N agents it is a system of N ¡1 equations in N ¡1 unknowns. This is why
the Negishi method (and methods relying on solving appropriate social plan-
ners problems in general) often signi¯cantly simpli¯es solving for competitive
equilibria.

2.2.5 Sequential Markets Equilibrium
The market structure of Arrow-Debreu equilibrium in which all agents meet only
once, at the beginning of time, to trade claims to future consumption may seem
empirically implausible. In this section we show that the same allocations as
in an Arrow-Debreu equilibrium would arise if we let agents trade consumption
and one-period bonds in each period. We will call a market structure in which
markets for consumption and assets open in each period Sequential Markets and
the corresponding equilibrium Sequential Markets (SM) equilibrium.6

Let rt+1 denote the interest rate on one period bonds from period t to period
t+1: A one period bond is a promise (contract) to pay 1 unit of the consumption
good in period t + 1 in exchange for 1

1+rt+1
units of the consumption good in

period t: We can interpret qt ´ 1
1+rt+1

as the relative price of one unit of the
consumption good in period t + 1 in terms of the period t consumption good.
Let ai

t+1 denote the amount of such bonds purchased by agent i in period t and
carried over to period t +1: If ai

t+1 < 0 we can interpret this as the agent taking
out a one-period loan at interest rate rt+1: Household i's budget constraint in
period t reads as

ci
t +

ai
t+1

(1 + rt+1)
· ei

t + ai
t (2.14)

or

ci
t + qtai

t+1 · ei
t + ai

t

Agents start out their life with initial bond holdings ai
0 (remember that period

0 bonds are claims to period 0 consumption). Mostly we will focus on the
situation in which ai

0 = 0 for all i; but sometimes we want to start an agent o®
with initial wealth (a i

0 > 0) or initial debt (ai
0 < 0): We then have the following

de¯nition

De¯nition 7 A Sequential Markets equilibrium is allocations f¡
ĉi

t; âi
t+1

¢
i=1;2

g1
t=1;

interest rates fr̂t+1g1
t=0 such that

6In the simple model we consider in this section the restriction of assets traded to one-
period riskless bonds is without loss of generality. In more complicated economies (with
uncertainty, say) it would not be. We will come back to this issue in later chapters.
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1. For i = 1; 2; given interest rates fr̂t+1g1
t=0 fĉi

t ; âi
t+1g1

t=0 solves

max
fci

t;a
i
t+1g1

t=0

1X

t=0

¯t ln(ci
t) (2.15)

s.t.

ci
t +

ai
t+1

(1 + rt+1)
· ei

t + ai
t (2.16)

ci
t ¸ 0 for all t (2.17)

ai
t+1 ¸ ¡ ¹Ai (2.18)

2. For all t ¸ 0

2X

i=1

ĉi
t =

2X

i=1

ei
t

2X

i=1

âi
t+1 = 0

The constraint (2:18) on borrowing is necessary to guarantee existence of
equilibrium. Suppose that agents would not face any constraint as to how
much they can borrow, i.e. suppose the constraint (2:18) were absent. Suppose
there would exist a SM-equilibrium f

¡
ĉi
t ; âi

t+1
¢

i=1;2g1
t=1; fr̂t+1g1

t=0: Without con-
straint on borrowing agent i could always do better by setting

ci
0 = ĉi

0 +
"

1 + r̂1

ai
1 = âi

1 ¡ "
ai

2 = âi
2 ¡ (1 + r̂2)"

ai
t+1 = âi

t+1 ¡
tY

t=1

(1 + r̂t+1)"

i.e. by borrowing " > 0 more in period 0; consuming it and then rolling over the
additional debt forever, by borrowing more and more. Such a scheme is often
called a Ponzi scheme. Hence without a limit on borrowing no SM equilibrium
can exist because agents would run Ponzi schemes.

In this section we are interested in specifying a borrowing limit that prevents
Ponzi schemes, yet is high enough so that households are never constrained
in the amount they can borrow (by this we mean that a household, knowing
that it can not run a Ponzi scheme, would always ¯nd it optimal to choose
a i

t+1 > ¡ ¹Ai): In later chapters we will analyze economies in which agents face
borrowing constraints that are binding in certain situations. Not only are SM
equilibria for these economies quite di®erent from the ones to be studied here,
but also the equivalence between SM equilibria and AD equilibria will break
down.
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We are now ready to state the equivalence theorem relating AD equilibria
and SM equilibria. Assume that ai

0 = 0 for all i = 1; 2:

Proposition 8 Let al locations f
¡
ĉi
t
¢

i=1;2g1
t=0 and prices fp̂tg1

t=0 form an Arrow-
Debreu equilibrium. Then there exist

¡ ¹Ai
¢

i=1;2
and a corresponding sequen-

tial markets equilibrium with allocations f
¡
~ci
t ; ~ai

t+1
¢

i=1;2g1
t=0 and interest rates

f~rt+1g1
t=0 such that

~ci
t = ĉi

t for all i; all t

Reversely, let allocations f
¡
ĉi

t; âi
t+1

¢
i=1;2g1

t=0 and interest rates fr̂t+1g1
t=0 form

a sequential markets equilibrium. Suppose that it satis¯es

âi
t+1 > ¡ ¹Ai for al l i; all t

r̂t+1 > 0 for all t

Then there exists a corresponding Arrow-Debreu equilibrium f
¡
~ci
t
¢

i=1;2g1
t=0; f~ptg1

t=0
such that

ĉi
t = ~ci

t for all i; all t

Proof. Step 1: The key to the proof is to show the equivalence of the budget
sets for the Arrow-Debreu and the sequential markets structure. Normalize
p̂0 = 1 and relate equilibrium prices and interest rates by

1 + r̂t+1 =
p̂t

p̂t+1
(2.19)

Now look at the sequence of sequential markets budget constraints and assume
that they hold with equality (which they do in equilibrium, due to the nonsa-
tiation assumption)

ci
0 +

ai
1

1 + r̂1
= ei

0 (2.20)

ci
1 +

ai
2

1 + r̂2
= ei

1 + ai
1 (2.21)

...

ci
t +

ai
t+1

1 + r̂t+1
= ei

t + ai
t (2.22)

Substituting for ai
1 from (2:21) in (2:20) one gets

ci
0 +

ci
1

1 + r̂1
+

ai
2

(1 + r̂1) (1 + r̂2)
= ei

0 +
ei
1

(1 + r̂1)
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and, repeating this exercise, one gets7

TX

t=0

ci
tQt

j=1(1 + r̂j )
+

ai
T +1QT +1

j=1 (1 + r̂j)
=

TX

t=0

ei
tQt

j=1(1 + r̂j )

Now note that (using the normalization p̂0 = 1)

tY

j=1

(1 + r̂j ) =
p̂0

p̂1
¤ p̂1

p̂2
¢ ¢ ¢ ¤ p̂t¡1

p̂t
=

1
p̂t

(2.23)

Taking limits with respect to t on both sides gives, using (2:23)

1X

t=0

p̂tci
t + lim

T !1

ai
T +1QT +1

j=1 (1 + r̂j )
=

1X

t=0

p̂tei
t

Given our assumptions on the equilibrium interest rates we have

lim
T !1

ai
T +1QT +1

j=1 (1 + r̂j )
¸ lim

T !1
¡ ¹Ai

QT+1
j=1 (1 + r̂j )

= 0

and hence
1X

t=0

p̂tci
t ·

1X

t=0

p̂tei
t

Step 2: Now suppose we have an AD-equilibrium f¡
ĉi

t
¢

i=1;2
g1

t=0, fp̂tg1
t=0:

We want to show that there exist a SM equilibrium with same consumption
allocation, i.e.

~ci
t = ĉi

t for all i; all t

Obviously f¡
~ci
t
¢

i=1;2
g1

t=0 satis¯es market clearing. De¯ning as asset holdings

~ai
t+1 =

1X

¿=1

p̂t+¿
¡
ĉi

t+¿ ¡ ei
t+¿

¢

p̂t+1

we see that the allocation satis¯es the SM budget constraints (remember 1 +
~rt+1 = p̂t

p̂t+1
) Also note that

~ai
t+1 > ¡

1X

¿=1

p̂t+¿ ei
t+¿

p̂t+1
¸ ¡

1X

t=0

p̂tei
t > ¡1

7We de¯ne
0Y

j=1

(1 + r̂j ) = 1
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so that we can take

¹Ai =
1X

t=0

p̂tei
t

This borrowing constraint, equalling the value of the endowment of agent i at
AD-equilibrium prices is also called the natural debt limit. This borrowing limit
is so high that agent i; knowing that she can't run a Ponzi scheme, will never
reach it.

It remains to argue that f
¡
~ci

t
¢

i=1;2
g1

t=0 maximizes utility, subject to the
sequential markets budget constraints and the borrowing constraints. Take
any other allocation satisfying these constraints. In step 1. we showed that
this allocation satis¯es the AD budget constraint. If it would be better than
f~ci

t = ĉi
tg1

t=0 it would have been chosen as part of an AD-equilibrium, which it
wasn't. Hence f~ci

tg1
t=0 is optimal within the set of allocations satisfying the SM

budget constraints at interest rates 1 + ~rt+1 = p̂t
p̂t+1

:
Step 3: Now suppose f

¡
ĉi

t; â
i
t+1

¢
i2I

g1
t=1 and fr̂t+1g1

t=0 form a sequential
markets equilibrium satisfying

âi
t+1 > ¡ ¹Ai for all i; all t

r̂t+1 > 0 for all t

We want to show that there exists a corresponding Arrow-Debreu equilibrium
f
¡
~ci

t

¢
i2I

g1
t=0; f~ptg1

t=0 with

ĉi
t = ~ci

t for all i; all t

Again obviously f
¡
~ci
t
¢

i2Ig1
t=0 satis¯es market clearing and, as shown in step

1, the AD budget constraint. It remains to be shown that it maximizes utility
within the set of allocations satisfying the AD budget constraint. For ~p0 = 1
and ~pt+1 = ~pt

1+r̂t+1
the set of allocations satisfying the AD budget constraint

coincides with the set of allocations satisfying the SM-budget constraint (for
appropriate choices of asset holdings). Since in the SM equilibrium we have the
additional borrowing constraints, the set over which we maximize in the AD case
is larger, since the borrowing constraints are absent in the AD formulation. But
by assumption these additional constraints are never binding (âi

t+1 > ¡ ¹Ai):
Then from a basic theorem of constrained optimization we know that if the
additional constraints are never binding, then the maximizer of the constrained
problem is also the maximizer of the unconstrained problem, and hence f~ci

tg1
t=0

is optimal for household i within the set of allocations satisfying her AD budget
constraint.

This proposition shows that the sequential markets and the Arrow-Debreu
market structures lead to identical equilibria, provided that we choose the no
Ponzi conditions appropriately (equal to the natural debt limits, for example)
and that the equilibrium interest rates are su±ciently high.8 Usually the anal-

8This assumption can be su±ciently weakened if one introduces borrowing constraints of
slightly di®erent form in the SM equilibrium to prevent Ponzi schemes. We may come back
to this later.
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ysis of our economies is easier to carry out using AD language, but the SM
formulation has more empirical appeal. The preceding theorem shows that we
can have the best of both worlds.

For our example economy we ¯nd that the equilibrium interest rates in the
SM formulation are given by

1 + rt+1 =
pt

pt+1
=

1
¯

or

rt+1 = r =
1
¯

¡ 1 = ½

i.e. the interest rate is constant and equal to the subjective time discount rate
½ = 1

¯ ¡ 1:

2.3 Appendix: Some Facts about Utility Func-
tions

The utility function

u(ci) =
1X

t=0

¯t ln(ci
t) (2.24)

described in the main text satis¯es the following assumptions that we will often
require in our models:

1. Time separability: total utility from a consumption allocation ci equals
the discounted sum of period (or instantaneous) utility U(ci

t) = ln(ci
t): In

particular, the period utility at time t only depends on consumption in
period t and not on consumption in other periods. This formulation rules
out, among other things, habit persistence.

2. Time discounting: the fact that ¯ < 1 indicates that agents are impatient.
The same amount of consumption yields less utility if it comes at a later
time in an agents' life. The parameter ¯ is often referred to as (subjective)
time discount factor. The sub jective time discount rate ½ is de¯ned by
¯ = 1

1+½ and is often, as we will see, intimately related to the equilibrium
interest rate in the economy (because the interest rate is nothing else but
the market time discount rate).

3. Homotheticity: De¯ne the marginal rate of substitution between consump-
tion at any two dates t and t + s as

MRS(ct+s; ct) =
@u(c)
@ct+s

@u(c)
@ct
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The function u is said to be homothetic if MRS(ct+s; ct) = MRS(¸ct+s; ¸ct)
for all ¸ > 0 and c: It is easy to verify that for u de¯ned above we have

M RS(ct+s; ct) =
¯t+s

ct+s

¯t

ct

=
¸¯t+s

ct+s

¸¯t

ct

= MRS(¸ct+s; ¸ct)

and hence u is homothetic. This, in particular, implies that if an agent's
lifetime income doubles, optimal consumption choices will double in each
period (income expansion paths are linear).9 It also means that consump-
tion allocations are independent of the units of measurement employed.

4. The instantaneous utility function or felicity function U(c) = ln(c) is con-
tinuous, twice continuously di®erentiable, strictly increasing (i.e. U 0(c) >
0) and strictly concave (i.e. U 00(c) < 0) and satis¯es the Inada conditions

lim
c&0

U 0(c) = +1

lim
c%+1

U 0(c) = 0

These assumptions imply that more consumption is always better, but an
additional unit of consumption yields less and less additional utility. The
Inada conditions indicate that the ¯rst unit of consumption yields a lot of
additional utility but that as consumption goes to in¯nity, an additional
unit is (almost) worthless. The Inada conditions will guarantee that an
agent always chooses ct 2 (0;1) for all t

5. The felicity function U is a member of the class of Constant Relative Risk
Aversion (CRRA) utility functions. These functions have the following
important properties. First, de¯ne as ¾(c) = ¡ U 00(c)c

U 0(c) the (Arrow-Pratt)
coe±cient of relative risk aversion. Hence ¾(c) indicates a household's
attitude towards risk, with higher ¾(c) representing higher risk aversion.
For CRRA utility functions ¾(c) is constant for all levels of consumption,
and for U(c) = ln(c) it is not only constant, but equal to ¾(c) = ¾ = 1:
Second, the intertemporal elasticity of substitution ist(ct+1; ct) measures
by how many percent the relative demand for consumption in period t+1;
relative to demand for consumption in period t; ct+1

ct
declines as the relative

price of consumption in t +1 to consumption in t; qt = 1
1+rt+1

changes by
one percent. Formally

ist(ct+1; ct) = ¡

·
d(ct+1

ct )
ct+1

ct

¸

· 1
1+rt+1

d 1
1+rt+1

¸ = ¡

·
d( ct+1

ct )
d 1

1+rt+1

¸

· ct+1
ct
1

1+rt+1

¸

9In the absense of borrowing constraints and other frictions which we will discuss later.
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But combining (2:6) and (2:7) we see that

¯U 0(ct+1)
U 0(ct)

=
pt+1

pt
=

1
1 + rt+1

which, for U(c) = ln(c) becomes

ct+1

ct
=

1
¯

µ
1

1 + rt+1

¶¡1

and thus

d
³

ct+1
ct

´

d 1
1+rt+1

= ¡ 1
¯

µ
1

1 + rt+1

¶¡2

and therefore

ist(ct+1; ct) = ¡

·
d(ct+1

ct )
d 1

1+rt+1

¸

· ct+1
ct
1

1+rt+1

¸ = ¡
¡ 1

¯

³
1

1+rt+1

´¡2

1
¯

³
1

1+rt+1

´¡2 = 1

Therefore logarithmic period utility is sometimes also called isoelastic util-
ity.10 Hence for logarithmic period utility the intertemporal elasticity sub-
stitution is equal to (the inverse of) the coe±cient of relative risk aversion.

10In general CRRA utility functions are of the form

U(c) =
c1¡¾ ¡ 1
1¡ ¾

and one can easily compute that the coe±cient of relative risk aversion for this utility function
is ¾ and the intertemporal elasticity of substitution equals ¾¡1:

In a homework you will show that

ln(c) = lim
¾!1

c1¡¾ ¡ 1
1¡¾

i.e. that logarithmic utility is a special case of this general class of utility functions.
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